Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constructing Treatment Portfolios Using Affinity Propagation

Identifieur interne : 002A99 ( Main/Exploration ); précédent : 002A98; suivant : 002B00

Constructing Treatment Portfolios Using Affinity Propagation

Auteurs : Delbert Dueck [Canada] ; Brendan J. Frey [Canada] ; Nebojsa Jojic [États-Unis] ; Vladimir Jojic [Canada, États-Unis] ; Guri Giaever [Canada] ; Andrew Emili [Canada] ; Gabe Musso [Canada] ; Robert Hegele [Canada]

Source :

RBID : ISTEX:4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1

Abstract

Abstract: A key problem of interest to biologists and medical researchers is the selection of a subset of queries or treatments that provide maximum utility for a population of targets. For example, when studying how gene deletion mutants respond to each of thousands of drugs, it is desirable to identify a small subset of genes that nearly uniquely define a drug ‘footprint’ that provides maximum predictability about the organism’s response to the drugs. As another example, when designing a cocktail of HIV genome sequences to be used as a vaccine, it is desirable to identify a small number of sequences that provide maximum immunological protection to a specified population of recipients. We refer to this task as ‘treatment portfolio design’ and formalize it as a facility location problem. Finding a treatment portfolio is NP-hard in the size of portfolio and number of targets, but a variety of greedy algorithms can be applied. We introduce a new algorithm for treatment portfolio design based on similar insights that made the recently-published affinity propagation algorithm work quite well for clustering tasks. We demonstrate this method using the two problems described above: selecting a subset of yeast genes that act as a drug-response footprint, and selecting a subset of vaccine sequences that provide maximum epitope coverage for an HIV genome population.

Url:
DOI: 10.1007/978-3-540-78839-3_31


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Constructing Treatment Portfolios Using Affinity Propagation</title>
<author>
<name sortKey="Dueck, Delbert" sort="Dueck, Delbert" uniqKey="Dueck D" first="Delbert" last="Dueck">Delbert Dueck</name>
</author>
<author>
<name sortKey="Frey, Brendan J" sort="Frey, Brendan J" uniqKey="Frey B" first="Brendan J." last="Frey">Brendan J. Frey</name>
</author>
<author>
<name sortKey="Jojic, Nebojsa" sort="Jojic, Nebojsa" uniqKey="Jojic N" first="Nebojsa" last="Jojic">Nebojsa Jojic</name>
</author>
<author>
<name sortKey="Jojic, Vladimir" sort="Jojic, Vladimir" uniqKey="Jojic V" first="Vladimir" last="Jojic">Vladimir Jojic</name>
</author>
<author>
<name sortKey="Giaever, Guri" sort="Giaever, Guri" uniqKey="Giaever G" first="Guri" last="Giaever">Guri Giaever</name>
</author>
<author>
<name sortKey="Emili, Andrew" sort="Emili, Andrew" uniqKey="Emili A" first="Andrew" last="Emili">Andrew Emili</name>
</author>
<author>
<name sortKey="Musso, Gabe" sort="Musso, Gabe" uniqKey="Musso G" first="Gabe" last="Musso">Gabe Musso</name>
</author>
<author>
<name sortKey="Hegele, Robert" sort="Hegele, Robert" uniqKey="Hegele R" first="Robert" last="Hegele">Robert Hegele</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1</idno>
<date when="2008" year="2008">2008</date>
<idno type="doi">10.1007/978-3-540-78839-3_31</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-SSMVNFLT-L/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000B69</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000B69</idno>
<idno type="wicri:Area/Istex/Curation">000B69</idno>
<idno type="wicri:Area/Istex/Checkpoint">000813</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000813</idno>
<idno type="wicri:doubleKey">0302-9743:2008:Dueck D:constructing:treatment:portfolios</idno>
<idno type="wicri:Area/Main/Merge">002B25</idno>
<idno type="wicri:Area/Main/Curation">002A99</idno>
<idno type="wicri:Area/Main/Exploration">002A99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Constructing Treatment Portfolios Using Affinity Propagation</title>
<author>
<name sortKey="Dueck, Delbert" sort="Dueck, Delbert" uniqKey="Dueck D" first="Delbert" last="Dueck">Delbert Dueck</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Electrical and Computer Engineering, University of Toronto</wicri:regionArea>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Frey, Brendan J" sort="Frey, Brendan J" uniqKey="Frey B" first="Brendan J." last="Frey">Brendan J. Frey</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Electrical and Computer Engineering, University of Toronto</wicri:regionArea>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Cellular and Biomolecular Research, University of Toronto</wicri:regionArea>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jojic, Nebojsa" sort="Jojic, Nebojsa" uniqKey="Jojic N" first="Nebojsa" last="Jojic">Nebojsa Jojic</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Machine Learning and Statistics, Microsoft Research, Redmond</wicri:regionArea>
<wicri:noRegion>Redmond</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jojic, Vladimir" sort="Jojic, Vladimir" uniqKey="Jojic V" first="Vladimir" last="Jojic">Vladimir Jojic</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Electrical and Computer Engineering, University of Toronto</wicri:regionArea>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Machine Learning and Statistics, Microsoft Research, Redmond</wicri:regionArea>
<wicri:noRegion>Redmond</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computer Science, Stanford University</wicri:regionArea>
<wicri:noRegion>Stanford University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giaever, Guri" sort="Giaever, Guri" uniqKey="Giaever G" first="Guri" last="Giaever">Guri Giaever</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Cellular and Biomolecular Research, University of Toronto</wicri:regionArea>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Emili, Andrew" sort="Emili, Andrew" uniqKey="Emili A" first="Andrew" last="Emili">Andrew Emili</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Cellular and Biomolecular Research, University of Toronto</wicri:regionArea>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Musso, Gabe" sort="Musso, Gabe" uniqKey="Musso G" first="Gabe" last="Musso">Gabe Musso</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Center for Cellular and Biomolecular Research, University of Toronto</wicri:regionArea>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hegele, Robert" sort="Hegele, Robert" uniqKey="Hegele R" first="Robert" last="Hegele">Robert Hegele</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Cardiovascular Genetics Laboratory, Robarts Research Institute, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="s" type="main" xml:lang="en">Lecture Notes in Computer Science</title>
<idno type="ISSN">0302-9743</idno>
<idno type="eISSN">1611-3349</idno>
<idno type="ISSN">0302-9743</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0302-9743</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A key problem of interest to biologists and medical researchers is the selection of a subset of queries or treatments that provide maximum utility for a population of targets. For example, when studying how gene deletion mutants respond to each of thousands of drugs, it is desirable to identify a small subset of genes that nearly uniquely define a drug ‘footprint’ that provides maximum predictability about the organism’s response to the drugs. As another example, when designing a cocktail of HIV genome sequences to be used as a vaccine, it is desirable to identify a small number of sequences that provide maximum immunological protection to a specified population of recipients. We refer to this task as ‘treatment portfolio design’ and formalize it as a facility location problem. Finding a treatment portfolio is NP-hard in the size of portfolio and number of targets, but a variety of greedy algorithms can be applied. We introduce a new algorithm for treatment portfolio design based on similar insights that made the recently-published affinity propagation algorithm work quite well for clustering tasks. We demonstrate this method using the two problems described above: selecting a subset of yeast genes that act as a drug-response footprint, and selecting a subset of vaccine sequences that provide maximum epitope coverage for an HIV genome population.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
<li>Ontario</li>
</region>
<settlement>
<li>Londres</li>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Ontario">
<name sortKey="Dueck, Delbert" sort="Dueck, Delbert" uniqKey="Dueck D" first="Delbert" last="Dueck">Delbert Dueck</name>
</region>
<name sortKey="Emili, Andrew" sort="Emili, Andrew" uniqKey="Emili A" first="Andrew" last="Emili">Andrew Emili</name>
<name sortKey="Frey, Brendan J" sort="Frey, Brendan J" uniqKey="Frey B" first="Brendan J." last="Frey">Brendan J. Frey</name>
<name sortKey="Frey, Brendan J" sort="Frey, Brendan J" uniqKey="Frey B" first="Brendan J." last="Frey">Brendan J. Frey</name>
<name sortKey="Giaever, Guri" sort="Giaever, Guri" uniqKey="Giaever G" first="Guri" last="Giaever">Guri Giaever</name>
<name sortKey="Hegele, Robert" sort="Hegele, Robert" uniqKey="Hegele R" first="Robert" last="Hegele">Robert Hegele</name>
<name sortKey="Jojic, Vladimir" sort="Jojic, Vladimir" uniqKey="Jojic V" first="Vladimir" last="Jojic">Vladimir Jojic</name>
<name sortKey="Musso, Gabe" sort="Musso, Gabe" uniqKey="Musso G" first="Gabe" last="Musso">Gabe Musso</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Jojic, Nebojsa" sort="Jojic, Nebojsa" uniqKey="Jojic N" first="Nebojsa" last="Jojic">Nebojsa Jojic</name>
</noRegion>
<name sortKey="Jojic, Vladimir" sort="Jojic, Vladimir" uniqKey="Jojic V" first="Vladimir" last="Jojic">Vladimir Jojic</name>
<name sortKey="Jojic, Vladimir" sort="Jojic, Vladimir" uniqKey="Jojic V" first="Vladimir" last="Jojic">Vladimir Jojic</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:4E2DB7E9E3E0FA02EC2790BF840D404B35FFA7E1
   |texte=   Constructing Treatment Portfolios Using Affinity Propagation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021